1. Working with CREAM v.3.0.

Here is the user guide for CREAM v.3.0. The process of installation and configuration is described
in chapter 1.1. The following sections show how you can use the features of CREAM v.3.0.

1.1. Installing and configuring CREAM

CREAM v.3.0. is integrated with external applications that make it possible to use the full
functionality of the tool. It is recommended to install them prior to the installation of CREAM.
These include:

e .NET Framework 4.0 [1]

e Visual Studio in one of the following versions:

° Visual Studio 2010 Premium.
° Visual Studio 2010 Ultimate.

> Visual Studio 2008 Team System.
e NUnitv.2.5.7.[2]
e NCoverv.3.4.14[3]
o Tester [4]
e SVN Client [5]
e Microsoft Excel 2007 or higher

The first two items in the list are required, while the remaining are optional, depending on
the CREAM functionality and user's choice.

A user should install additional software if they want to implement tools for unit tests
different than the ones shipped with Visual Studio. The tool supports unit tests prepared with the
use of MSTest and NUnit

In addition, if you want to use another tool (than the one built in Visual Studio) to test code
coverage, you can choose NCover or Tester.

SVN Client is required if a user wants to store mutant files on the SVN server.

It is also recommended to install Microsoft Excel 2003 or higher since the libraries supplied
with this program are used when saving reports to .xls files.

In order to install CREAM v.3.0. download setup.msi file from [6]. Once you run the
installer, follow the on-screen prompts.

When the installation is successful, you can run CREAM v.3.0 using the shortcut on the
desktop or selecting the appropriate item from the Windows Start menu (Programs-> EiTIPW->
CREAM). At this point you may be asked to install NET Framework 4.0. as it is required by the
application.

The tool is supplied with sample files with saved mutants and the results of the tests
conducted on them (the files with the .mut extension). Therefore, a user can test all the available
tool features without the need to generate and test mutants.

Once you run CREAM v.3.0. the main application window appears (Fig. 1).

Options Tests Tools Help

e Operators
Tl Standard operators Object operators
R A [ABS] DMC
;] ACR [C]EHR
ﬂ@}, (AN] ASR] EOA
) - [ILCR [EOC
) [LoR [EXS
SlJlLI'tIOI'IS D HDH D |HD
[T uol [C]IHI
[FJUDOR 10D
[]10K
Oj ek
OIrc
[15K
E]JID
O] JTD
[Remove] [Add] [Add from repository] E g’ri“‘DH
General options [C] PRM

[] Offut selective operators |[] PRV
[Mutation limit for files * 15 Mark all -
Mark all

[7] Global mutation limit 11 Show mutants
Compilation Current session [] All Show

Logs

Clear] [Statistics Start ‘

Figure 1 CREAM v.3.0. - Main application window

First of all, the application should be configured. To do this, select Options->CREAM

Settings from the menu at the top of the main application window. The Settings window will appear
(Figure 2). To configure the application you should fill in the following data:

Input source directory - the default directory to search for programs

Svn.exe file path - the directory with the svn.exe file (optional, required only when using the
function of storing mutants in the svn repository)

Output local directory - the working directory of CREAM v.3.0. (a user must have
permission to write in this directory)

Default repository - the SVN repository default address (optional, needed only if a user
wants to save mutants on the SVN server.

devenv.exe localization - the path to devenv.exe (compiler shipped with Visual Studio).

Unit testing tool localization - the path to the unit test tool. It will be either the path to the
directory with the nunit-console.exe (unit tests prepared with NUnit) or mstest.exe (unit tests
prepared with the tool built in Visual Studio)

© CREAM settings

Input source directory

Browse

SVN Settings

svn.exe file path: C:\Program Files'Subversion'bin Browse

Qutput directories

Qutput local directory: Browse
Deefault repository:

Tool directories

deveny.exe location: C:\Program Files'Microsoft Visual Studio 10.08Common ™IDE Browse

IR

Unit testing tool location: C:\Program FilesMicrosoft Visual Studio 10.0V\Common7\DE

[ok | Cancel

Figure 2 CREAM v.3.0. - The application settings window

After you have filled in the form, the tool is configured and ready to work. The next step is
to generate and test mutants (see sections 1.4-1.9).

1.2. Loading the project

In order to load the project you have to:

1) Run and configure CREAM v.3.0. as described in chapter 1.1.

2) Load a solution with a program written in C# with the use of Visual Studio by indicating
the location of the .sIn file (item 1a or 1b in Figure 3).

Options Tests Tools Help 3
|
— A
Standard operators Object operators
[Aes | [Eomc
7] ADR [F1EHR
1 ASR [F] EOA
LCR EOC
71 LOR [EXS
Sohutions i ROR [IHD
i vol -
UOR oD
[10K
[1oP
[FIPC
ISK
la 1b Hop
=g ——— 010
TN @ IR T oo
— S i OMR
) " |[C]FRM
] Offut selactive oparators PR
= £ = A
Mutation limit for files / 1= ‘Mark all =T
2
[] Global mutation limit 2 1
Show mutants
9] Compilation O 7] Curent session [P All Show
Logs !
— Saseies l
i |

Figure 3 CREAM v.3.0 main application window - the process of generating mutants

a) loading the solution stored on the local disk: in order to load the solution stored on the
local disk press the Add button in the Solutions section of the main application window (la
in Figure 3), and then indicate the location of the .sln file.

b) loading the solution stored in the SVN repository: to load the solution stored in the SVN
repository press the Add from repository button in the Solutions section of the main
application window (1b in Figure 3). The window will appear (Fig. 4) and you can browse
repositories. To select the solution file in a given repository you should:

- Enter a full repository address in the Reposiory root box and press the Connect button

- Select a revision number from the Revision list where the non-mutated project is stored

- In the tree in the Contents section, select a file (under the given revision) with the .sln
extension and press OK.

€ Select program from repository l | S
Repository root: svn://localhost/CreamPepo Connect
Revision: 35 ~ Solution file:

Downloaded directory
Contents:

El-bin/ -
é Debug/
- Microsoft. Practices. Enterprise Library. Comman dil
- Microsoft. Practices. Enterprize Library. Comman.pdb
Microsoft. Practices. Erterprise Library. Common. Test Support..dll
- Microsoft. Practices. Enterprise Library. Comman. Test Support pdb
- Microsoft. Practices. Enterprise Library. Logging il
- Microsoft. Practices. Enterprise Library. Logging pdb
-- Microsoft. Practices. ServiceLocation dil
- Microsoft. Practices. ServiceLocation pdb
- Microsoft. Practices. Unity dll
- Microsoft. Practices. Unity Interception.dil
Microsoft. Practices. Unity.Interception pdb
- Microsoft Practices. Unity pdb
--codecoverage. 2010 testrunconfig
data coverage
-+ EnterpriseLibrary 2010 testrunconfig
- (GlobalAssemblylnfo.2010.ce |
- Global Assemblylnfo.cs
-Lih/

n

Cancel

Figure 4 Browsing SVN repository

1.3. Using the SVN repository wizard

CREAM v.3.0. offers the SVN repository wizard. You can run it by selecting SVN Repository
Creator in the Tools menu of the main application window (Fig. 5).

€ SVN Repository Creator - : SNECH X
Action
Tip
If you don't have SVN tool on your computer, download it from: http://'subversion tigris.org/

SVN Repositary Location:
@) Local () Remote
SVN Repository Path:

I filesitt Browse

Load

Lozad exisiting or create new repaository for project uploading enable!

Local Project Path:

Figure S SVN Repository Creator

First you have to load the SVN repository. To do this: in SVN Repository Location choose
whether the repository is local or remote and fill the address box. When you have provided the
correct data and pressed the Load button the repository is ready. If it is empty, a new project can be
loaded and then used as the original project for the mutation process.

If you select the local repository and provide the address referring to an empty directory you
will be asked if you want to create an empty repository. After selecting 'yes' the wizard creates a
new repository where we can load the project.

1.4. Generating mutants (base scenario)

In order to generate mutants, perform the following steps:

1. Run, configure and load the project as described in chapter 1.2.

2. Select the operators with the use of which the mutants are to be created (point 3 in Figure 3).
It should be noted that under the list of structural operators a user can select Offutt selective
operator. By selecting it a subset of selective structural operators is loaded (according to the
research described in [7])

3. Inthe General Options section of the main window set additional parameters involved in the
mutation process (point 4 in Figure 3):
- Define the maximum number of mutation that can be implemented using different
operators in each file (Mutation limit for files box)
- Define the maximum number of mutation that can be implemented by each of the
operators (Global mutation limit box).
- Determine whether implementing the mutation will trigger the compilation process
(Compilation box)

4. Start the process of generating mutants by pressing the Start button (point 4 in Figure 3).

1.5. Generating mutants (advanced scenario)

You can use additional features of CREAM v.3.0. by the following steps:

1. Follow the steps: 1, 2 and 3 from the base scenario (Section 1.4)

2. Select Advance in General options section (point 2 in Figure 3) or Advanced in the Options
menu of the main window and the advanced options window will appear (Fig. 6).

. ™
€ Advanced options [‘:' =] ﬂ

Mutated Objects Solution Files
T -
CategoryFilterMode.cs F
Configuration\BinaryLogFormatterData cs
Configuration'CategoryFilterData.cs
Configuration'CategoryFilterEntry.cs
Configuration'BasicCustomTracelistenerData.cs
Configuration'CustomFormatterData.cs
Configuration'CustomLogFilterData.cs
Configuration'CustomTracelistenerData.cs
Configuration'CustomTracelistenerDataHelper.cs
Configuration'\Manageability'Filters\CategoryFilterDataMan
Configuration\Managezbility'Filters\CustomLogFilterDataM
Configuration'Manageability'\Filters\LogEnabledFilterDataM
Configuration\Manageability'\Filters\PricrityFilterDataManag
Configuration\Manageability\Formatters\BinaryLogF ormatte
Configuration\Manageability\Formatters\CustomFormatterD
Configuration'\Manageability'\Formatters\ TextFormatterData
Configuration\Manageability'\LoggingSettings Manageability|
Configuration\Manageability'\Properties'Assemblylnfo.cs
Configuration\Manageability'\Properties'R Designe
Configurati geability\Tracelisteners'\BasicCustomT
Configuration'Manageability'\ Tracelisteners'XmlTraceliste
Configuration'Manageability\ Tracelisteners\RollingFlatFile
Configuration\Manageability\ Tracelisteners\CustomTracel
Configuration\Manageability'\ Tracelisteners\EmailTracelis
Configuration\Manageability'\ Tracelisteners\FlatFileTracel
Configuration'Manageability'\ Tracelisteners\FormattedEver
Configuration'Manageability\ Tracelisteners\MsmgTracelis
Configuration'Manageability'\ Tracelisteners\SystemDiagno
Configuration\Manageability'Tracelisteners\Tracelistenerl
Configuration'Manageability\ Tracelisteners\wWmiTraceliste
Configuration\RollingTracelistenerData.cs
Configuration'SystemDiagnostics TracelistenerData.cs
Configuration'BasicCustomTracelistenerDataHelper.cs -

| Logging.2010.sln |

Projects

m

0gaing CSproj
Logging. Tests VSTS.2010.csproj
Common. Test Support. 2010 .csproj
Data.2010.csproj
Common.2010.csproj

Cumert File
File Name: Attributes.cs

[Mutation limit 12 Code coverage] [Parse tree

Program

Repository:

Code coverage:
[F] Mutate only covered code

Assign coverage file Class hierarchies

| [Reset All][Reset current][Mark all] [0K f

FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Figure 6 CREAM v.3.0. - Advanced options for mutations

In this window you can see the directory structure and files of the loaded project. By
checking / unchecking the files in the Files section, you can decide which of them will
participate in the process of mutation.

In the Advanced Options window, you can also assign a code coverage file to the
loaded project (by pressing Assign coverage file and selecting the previously generated file)
and define that only covered pieces of code should be mutated (by selecting Mutate only
covered code in the Program section). CREAM v.3.0. recognizes files with information
about the code coverage generated by: NCover [3] (.xml files), Visual Studio (.coverage
files), Tester [4] (.txt files). After selecting the file with the information about the coverage
you will be asked how to treat the lines, of which no information is available in the coverage
files. It is recommended to treat them as not covered lines.

In order to verify the accuracy of the loaded data the user can select any file from the
list and, by pressing the Code coverage button (under Current File), display its code with
coverage highlighted (Fig. 7). In this window, each line of the code represents different
information, depending on its color:

e Black - no file with coverage information

e Green - code covered

e Light green - no information on a given line of code treated as covered
e Red - code uncovered

e Bright red - no information on a given line of code treated as uncovered

File: C:\Users\Marcin\DocumentsimgriDo testdwiLogging\SrciLogging\Configuration\CategoryFilterData.cs

Line | Code o
33 new instance e <see cref="CategoryFitterData"/> cla ara i
35 public CategoryFitterData() = I
3 { M
37 _ Type =typeof(CategoryFiter); fl
- '
; !
. i
:_ t
47 H
4 . H
45 [
46 goryFiterMode categoryFiterMode) I
47 : this("category”, categoryFilters, categoryFitterMode) i
48 ! H
49 H
50 1
'l 1 + i
i
!
|

Figure 7 CREAM v.3.0. - Window with information about the code coverage

The Advanced Options dialog provides the possibility to limit the number of mutations
which will be applied to individual files in the mutation process.

In this window you can also view the parse tree of the selected file (Fig. 8) by choosing the
file in the Files section and click on Parse tree in the Current File section.

[E=EEE)

-
& ParseTreeForm

e

(= [Compilationlnit]

Current Bock: - [Compilation Linit]
i~ Start Location - {Line 0. Col 0)
‘... EndLocation - {Line D, Cal 0)
i UserData - NULL

Il [Children
-- Using Declaration
I -- UsingDeclaration
| -- UsingDeclaration
- Using Declaration
) UsingDeclaration
I [LUsings
| EndLocation - (Line 16, Col 68)
UserData - NULL
| - Children
[(- UsingDeclaration
[+~ UsingDeclaration
I - UsingDeclaration
N (- Namespace Declaration

| Expandall | | Collapseall |

Figure 8: Parse tree of a file

1.6. Reviewing generated mutants

To review generated mutants you should:

1. Generate mutants as described in section 1.4 or 1.5.

2. Select the Show button in the Show mutants section of the main application window. A
dialog with mutants appears (Fig. 9). In this window, you can choose previously generated

mutants from the list on the left side. Next, a window with the original and mutated code
7

appears, along with the lines where the changes were made. In this window you can view
both mutants stored locally as well as those from the SVN repository.

r = - |
@ Compare mutants with the original program s ¥ =HESN X
Locally stored mutants | Remotely stored mutants
File Logging.2010.eln -
Mutants Original code Mutated code
Alejell C:\Users"MarcinDocuments'\New folder\OriginalCode C:\Users\Marcin.Documents'\New folder'\MutatedCode*Logging.2010_EHR1
Logging 2010_EHRZ | |\ 5gging 2010.sin\Sre'Logging' Exralnformation "Src\LoggingExtralnformation’\ DebugInformation Provider cs
"DebuglrformationProvider.cs
Line Original code Line Mutated code o
44 public void Populate Dictionary(|Dictionary<string, obj... 44 public void Populate Dictionary{| Dictionary<string. object...
45 { 45 {
46 string value; 45 sting value;
47 try 47 ty {
43 value = debuglLtils GetStack TraceWithSource... 48 wvalue = debugltils GetStack TrmceWith Sourcelnf...
43 } 43 H
50 catch {SecurityException) { 50 catch {
51 value = String .Format{Culturelnfo CumentCuttur... 51 value = String. Format{CultureInfo CumentCutture, ...
52 }
53 catch {
54 value = String.Format(CuttureInfo CumertCuttur....
55 H 52 }
56 dict.Add(Resources. Debuglnfo_Stack Trace, value), 53 dict Add(Resources.Debuglnfo_Stack Trace. value);
57 H 54 H F
58 } 55 H
i 59 } 56 H
1

Figure 9 Reviewing mutants

1.7. Testing mutants

CREAM v.3.0. (when compared to v.2.0.) provides a new way of testing mutants with the
possibility to save the results to a file. Thereby, the processes of generating and testing mutants can
be isolated from further analyses.

To perform tests on the mutants and generate a file with the results follow these steps:

1. Generate mutants in accordance with the instructions in sections 1.4 or 1.5.

2. In the main application window select Run tests from the Tests menu

3. In the first wizard window, read the information on how to carry out the testing process and
click Next.

4. In the second step, choose where the mutants are stored: local disk or SVN repository.

5. In the next step of the wizard, select the appropriate data to load the project, mutants and
tests. Depending on whether the mutants and the project are stored on your local disk or in
the SVN repository you will be asked for additional data. The difference lies in how to
indicate a place where the original project is stored (see Section 2, Chapter 1.2). Other
information include: the relative path to the test files within the project (.dll files) and the
choice of external tools to perform unit testing (NUnit or MSTest). After providing the
above data, press Next.

6. The last step is to choose whether we want to test all of the mutants or just the selected ones
(Prepare data from in the wizard), generate results (by pressing the Run button) and save the
file with data with .mut extension on the local disk (Save button).

7. Test results saved in the generated file can be viewed in the Data Viewer (described in
Chapter 1.8).

1.8. Data Viewer

The basic feature of the Data Viewer is to display data stored in .mut files. The main application
window is shown in Figure 10.

Populate DictionanyFilled With Security Exception

Figure 10: Data Viewer main window

The application can be launched in different ways:

e By double-clicking on the file with the .mut extension. Data Viewer is automatically
associated with .mut files during the installation. When you start the application you
will immediately see the data stored in the selected file.

e By selecting Data Viewer from the Windows Start menu (by default in the EiTIPW
directory). You can load the file by selecting Load from the Options menu.

e By selecting Data Viewer in Tools menu in the main CREAM window.

If you run the application in a different way than double-clicking on the .mut file, you have
to load the data file (generated by CREAM v.3.0.). After loading the file, a tree with mutants
(grouped by operators) appears on the left side of the main application window. Selecting one of the
available mutants on the right will open the tab with information about the tests that kill it.

The more detailed information about the selected mutant may be obtained by right-clicking
on it and selecting Properties from the context menu (Figure 11). Among the information presented
in the window, some of the boxes are grayed out (you cannot edit them), and some are editable.
Remember that when you make changes, they will be saved only if you click on Submit.

r“ Mutant Properties =[] |- —)
Mutant name: EHRS
Valid: true
Covered: [false ,]
Storage: [Local Disc ']
Equivalent: [False =]

Source code details:

File: ogWriterimp
Mamespace: Microsoft. Practices . EnterprizeLibrary. Logging
Class: LogWriterlmpl
Method: Revert BxistingImpersonation()
Begin Line: 535
End Line: 609
Time details:
Process Begin: 2010-12-18 12:43:30 154
Code Generation End: 2010-12-18 12:43:30.172
Process End: 2010-12-18 12:43:48.761

Figure 11: Mutant Properties window

Additionally, the application allows you to perform several operations on the files. These
features are accessible from the 7ools menu in the main window:

e Merge Files - opens a dialog where a user can select the original file and additional
files, which can then be combined into one output file. Mutants stored in the
additional files are only attached if there isn't any mutant of the same name in the
original file, or when they haven't been attached previously. Having done this, save
the generated file (select File -> Save As from the menu in the main window).

e Statistics - summary of the number of loaded mutants divided into types.
Additionally, you will find the number of killed mutants and the Mutation Score
here. You can also set your own criteria taken into account in calculating the
statistics (live/killed, covered/uncovered, equivalent/non-equivalent mutants).

o Check for uncovered and killed - find uncovered mutants that can be killed by
appropriate tests. This information is used to verify the accuracy of the loaded data

1.9. Using the feature of testing cost reduction methods

Files with tests results (with .mut extension) generated as described in sections 1.5 or 1.6.
can provide input data for further analyses examining cost reduction methods.

The following steps of the analyses are visualized in the form of wizards. All of them have
some common parts, regardless of the chosen analysis (as described in Section 1.9.1) as well as
analysis-specific parts (as described in Sections 1.9.2, 1.9.3, 1.9.4).

1.9.1. Common parts of the visualizations

The first step of each visualization is a brief description of the selected analysis.

10

The next common step is to load the input data (Fig. 12). In this step the user can load the
data from an existing file (Load saved analysis input data position in the Input data section), or
open the wizard to generate the input data (Generate new analysis input data position in the Input
data section), which was described in section 1.7.

In this window a filter (see Mutants filter) selects mutants for further analysis:

e Covered by the tests or all regardless of coverage (Covered mutants option)
e Compilable or all (Valid option)
e Marked as non-equivalent or all (Nonequivalent option)

In addition, in this step the user can select the type of analysis (Testing type section):

e Single test - the course of the analysis is presented step by step, the user can manually set
the parameters and observe the results of the succeeding stages.

e Overall test - the course of the analysis is presented in the form of a report. It contains the
complete set of input parameters, and the generation takes place without a user interaction.
From the user's perspective the report is generated in the same manner, regardless of the
selected analysis. The differences are visible only in the final report.

.
€ Analysis wizard l = iz-]
Selective mulation
| Reduction in the number of mutants by reducing the number of mutation operators
applied.

Load input data (you have to generate it first) and select testing type to continue.

Input data

Load saved analysis input data: Load

Loaded file: none

Generate new analysis input data: Generate

Mutants filter

Covered mutants Valid Neoneguivalent

Testing type
Single Test Overall Test

Figure 12 Loading the input data for analysis

After loading the data the user can select a subset of mutants. It depends on the chosen
analysis and it is described in following sections.

Once we have selected a subset of mutants the process of generating minimal sets of the test
cases begins (Fig. 13). You can choose one of the available algorithms and, by pressing the Run
button, start the process of generating. When it is completed, its results will be presented in a table.
Depending on the algorithm and its parameters the process can generate more than one set. The user
selects one of them using the drop-down list above the table with the results.

11

[T

Selective mutation

Reduction in the number of mutants by reducing the number of mutstion operators
applied.

Select minimum test sets algorithm:
@ Greedy algeritm (only ene minimum tests subset)

() Boolean function minimum finding (at most (0 = minimum tests subsets)

Generate minimum tests subsets for selected project:

Resuits

Select minimum test subset from previous generated:
Test Case

MiscLtil. Unit Tests CachingBufferManagerTest. BufferCf LargerSize Retu .
MizcLitil. Unit Tests Ling.Examplelsage Test. ComplexFileParsing
MiscLtil. Unit Tests NonNullable Test. TestGetHashCode
MiscLtil. Unit Tests NonNullable Test. Test ToString

MiscLitil. Unit Tests Text . |f325ting Test . IntegerAmayConstructor Takes. ..

Mo R —

e s] [] 'J

b = —

Figure 13 Generating a minimal set of test cases

Once you have selected a subset of test cases, the next step is to calculate the statistics and
the corresponding MS values, which are the results of the given analysis (Fig. 14).

The meaning of particular MS values is as follows. The first MS value specifies the
percentage of killed mutants (out of all generated ones) with the use of all supplied test cases.
Whereas the MS values presented below are calculated using the subset of test cases from the
previous step of test case analysis and all the generated mutants.

After viewing the results, the user can close the wizard (Finish button), or go back and
perform another analysis with different parameters (Back button).

T —

Selective mutation

Reduction in the number of mutants by reducing the number of mutation operators
applied

Loaded project summary

Test Cases Count: 720
All Mutants Count: 64
Killed Mutants Count: 14
- us=21.88%
Cument Analysis Summary
| TestCases Count: 4

Mutants Count: 13

Killed (from all loaded) Mutants Count: 11

MS for tests from current analysis and all mutants

MS=17,19%

[<Back || Emsh | [cancel | :

A = —

Figure 14 Results of the analysis

1.9.2. Selective mutations

A subset of mutants for the selective mutation may be selected in two ways:

12

- by defining the number of ignored operators (Fig. 15). In this approach we successively eliminate
the operators according to their popularity (the number of generated mutants). To do this you have
to choose a value from the Most popular operator count ommited in analysis list in the wizard.

- by manually selecting the operators that we want to take into consideration in the further analysis.
It can be done by selecting User operators select option.

T T — =
Selective mutation
Reduction in the number of mutants by reducing the number of mutation operators
applied
Operators for analysis
Structursl operators Object operators:
V] ABS [¥] DMC Mast popular operators count
] A0R 7] EHR to ommited in analisys
v son £ cos
[¥] LCR [C] EOC
] LOR V] EXS
L [¥] ROR [¥] IHD
W] ol [¥] HI [] Free operators select
I [¥] UOR] 10D
[V] 10K
V] 1oP
I [IPC
V] ISK
[¥]JID
[¥] JTD
[¥] 0AQ
[¥] OMR
[¥] PRM
(| [¥] PRV
f
[<Back | Nea> | [cancel |

Figure 15 Selecting the operators to ignore in the selective mutation
1.9.3. Sampling mutants

In this approach, a subset of mutants is chosen at random. As parameters you can provide
the type of randomness (in Random Type list) and the percentage of mutants to be selected
(choosing a value from Percent of randomly selected mutants) (Fig. 16)

)
Mutation Sampling
Reduction in the number of mutants by randomly selecting mutants from all generated.
Random Type: lm
Percent of randomly selected mutants: m
Random Mutants |
Mutarit Id o
} I}
~ |eocio
EOC15
EOC16
EOC19
EOCZ27
EOCZ5
EOC35 I
EOC36
EOC39
EOC4 |
EOC40
-

<Back | Ned> | Cancel |

Figure 16 Selection of mutants - sampling mutants

13

1.9.4. Clustering mutants

In the clustering method a subset of mutants is selected as representatives of generated
clusters (Fig. 17). As a parameter you specify the similarity ratio between members of the clusters

(in Threshold for clustering algorithm).

O =)

Mutation Clustering
I Reduction in the number of mutants by choosing a subset of mutants using clustering I
algorithms.

Threshold for clustering algorithm: 1 EI

Cluster Id

i EX55 EHR1_EOAT_EOA10_EOAZ_EOA3 EOA4 EOAS_EOAGE_EOAT EOA..
EOC11_EQC12_JID1 I
1005 |
1007

1oD8

IOKS

JiD2

JID3
JTD1_0AO1

JTD3
0A02

W o o~ s W R =

]

Figure 17 Generating a subset of mutants in the process of clustering

1.9.5. Overall reports for analysis of cost reduction methods

While working with the cost reduction analysis wizard, you can choose an Overall Test.

Figure 18 shows exactly where you can find this option.

14

& Analysis wizand l;ﬁ
Selective mulabon
| Reduction in the numbsar of mulants by reducing e numbss of mulabion operalons
applisd
il
Le=d input diats (you heve o generabes it firsf] and select teshing byps fo conbnue.
ot data
Load saved analyss inpul dala: | Lizesd
Loaded file none
Generaie new analysis input dats Generale
Mutanls fiber
| Cavered mutsris | walid | Manequivabanl
Tesatirng bype
Single Tast
|
« Bk Iieet | Cancel J

Figure 18. Selecting Overall Test in the analysis wizard

This option generates the report in .xlIsx file. (you can open it using the Microsoft Excel
2007 or higher).The structure of the generated reports is very similar, regardless of the cost
reduction method in use.A report consists of:
1. A sheet with general information about the tested project and the values of the
parameters used in the calculation of analysis quality
2. Sheets with numerical data
3. Sheets with visual charts of collected data

The following chapters describe in detail the contents of each sheet.

1.9.5.1. Sheet with general information about the tested project and the values of
the parameters used in the calculation of analysis quality

This sheet is independent of the cost reduction method in use. It contains the following

information (Fig. 19):

1) Project name

2) Date of report generation

3) The total number of test cases provided in the analyzed project

4) The number of all mutants generated for the analyzed project

5) The mutation result value calculated for all mutants with the use of all test cases

6) All mutants creation time (with compilation)

7) All mutants creation time (without compilation)

8) All test cases execution time

9) The weighting factors used for calculating analysis quality

15

- e MLEEnChusbering Template.sk s WAcroso Excd RS
EAIEE T S N RS _ L e Tempiateske; WOSOLERcd | e st it el st :
| = Harcpdria qldwme Wibswisnie Lkind drany Parrul Dane Rerenna WAdat Lrssd Test Tasrn W-ox

120 - s |53

A 5] C: [¥] E F [E] H 1
| i Mutation sampling report _ _
o Pt 1 4 weighting factors for analysis quality
Date

2 Hulzban Bcoee TastCase Mumzer Wurtant Mumbsar

f
5 Tl coste ciunk: E] [[F] [
5 Mulmis comnl g
" M5 o all st cases: 5

12
M4 bR (hwrdiew Dra | That | ¢ :
L odawy | el

Figure 19. Overall Report sheet with general information

1.9.5.2. Sheet with numerical data

A sheet with numerical data consists of two parts.The initial columns depend on the current
analysis.The following columns are independent of the prior choices.

The columns with data specific to selective mutations are shown in Figure 20.Their meaning

is as follows:
1) The number of mutation operators ommited or a specific operator name (if there is only one)

A
~

Mutation
1 Operators
Ommited

1

Figure 20. Spreadsheet columns with data specific to the selective mutations

The columns specific to the mutant sampling are shown in Figure 21. Their meaning is as

follows:
1) A value that specifies the percentage of mutants that are examined in further analysis
A
1 Selected mutants [%]
1
2

Figure 21 Spreadsheet columns with data specific to mutant sampling

The columns specific to the mutant clustering are shown in Figure 22. Their meaning is as

follows:
1) The value of the clustering algorithm parameter (determines the degree of similarity

between clusters)
2) The number of clusters formed by the algorithm

16

Threshald Cluster Number

1 2

“

Figure 22. Spreadsheet columns with data specific to the mutant clustering

The spreadsheet columns with data independent of the chosen analysis are shown in Figure

23. Their meaning is as follows:

1)
2)

3)
4)
3)
6)
7)
8)

9)

The number of minimum test cases sets for an analyzed subset of mutants.

The minimum, average and maximum Mutation Score calculated for the examined subset of
mutants with each of the minimum sets of test cases.

The minimum, average and maximum test case number for each of the sets of minimum test
cases

The minimum, average and maximum execution time of all tests for each of the sets of
minimum test cases

The number of mutants examined

Creation time of examined mutants (without compilation)

Creation time of examined mutants (with compilation)

Values for the ratio of measurement 2, 3, 4, 5, 6, 7 to the original one (calculated for all
mutants and the whole set of test cases)

Normalized values of selected measures of 8

10) The calculated (with weighting factors from Fig. 19 p.9) value of the quality of the analysis
11) Normalized value of the quality of the analysis 10

L]

u] E F G H J K L L] i)]

M5 Iest Case Bumbsr Tesk Case Fxecubon Tims
RMutants" Butants”

UL 2 3 4 Mutant Humises | ETE3H0N e |craation time
Humbsar |wathaul {with
MIN AVG MAX KN ANVG MAX MIN AVG MAX Al S
1 3 6 F
0 F o I R] B] T [U v W X v
Differance Hggmalized
. |Mormalized
8 9 Anakbysis .
Qs ity el
= Teat Comns - Kutant Cods lut=nis - Teat Cass Mlutans Cuality
M3 :5- — Exgcution M wa; Creation Creshon oi Mumbigr HumSer 1'] 1 1
e Time um Time Time ! o Differenoe Difference

Figure 23. Spreadsheet columns with data independent of the chosen analysis

1.9.5.3. Sheet with charts of collected data

For each of the overall reports there are spreadsheets with charts. They visualize the data

collected in the previous sheets. Figure 20 presents a sample chart.

17

gy T Y =T e

— Faaigilisg garaaic Waarane Ukl cbury =ziuky Lenz Ilevengs VRl Lzwal lesd 1 e _ =
hal Fo

I [| =

Selective mutation - operators rejection

100,005 /.\ B
WA -
2000
FILONA
Lo e 1]
000%
40.00%
HLOS
00w
Wikt
nowE
n 1 i ! 4 5 L) ¥ .} 1 15 1 12 13 14
s Normalized Gralyzls Cuality i 15 Difference Test Saze Kumier Dfference Wkttt Mumber Dofference
Hakh Tewdng Resuks Testnp Reuss {25 Tagdng Rosoks (3] Sngraine MS | Wykresl Winesd 'I'.l-]
_— (S

Figure 24. Sample chart from the overall report

1.10. Guidelines for CREAM users

If you want to generate a lot of mutants, you have to use the SVN repository (not a local drive).
Use “Mutate only covered code” option to generate only useful mutants.

Do not generate mutants from unit testing projects.

Choose correct unit testing tool that you want to use in mutant testing process.

Long mutation testing process can be split to several smaller. Then you can use Data Viewer
tool to merge previous generated data.

e Ifyou want to use .coverage files to import coverage information, first you have to generate
them on your own computer.

[1] . NET Framework v.4.0.,
http://www.microsoft.com/downloads/en/details.aspx?Familyl D=9ctb2d51-51f4-4491-b0e5-
b386132¢0992 &displaylang=en , 2010-11-23

[2] NUnit, http:// Www.nunit.org , 2010-10-09

[3] NCover, www.ncover.com , 2010-11-23

[4] K. Sarba - "Automating the process of testing programs and statistical analysis", MA thesis, Warsaw University of
Technology, Institute of Computer Science, 2007

[5] SVN http://subversion.tigris.org/ , 2011-01-27

[6] CREAM Website, http:/galera.ii.pw.edu.pl/~adr/CREAM

18

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992&displaylang=en
http://www.nunit.org/
http://www.ncover.com/
http://subversion.tigris.org/
http://galera.ii.pw.edu.pl/~adr/CREAM

[7] AJ Offutt, G. Rothermel, and C. Zapf, "An Experimental Evaluation of Selective Mutation," in Proceedings of the
15th International Conference on Software Engineering (ICSE'93).Baltimore, Maryland: IEEE Computer Society Press,
May 1993, pp. 100-107.

19

